
A Non-Technical XACML Target Editor
for Dynamic Access Control Systems

Bernard Stepien, Amy Felty
University of Ottawa

School of Electrical Engineering and Computer Science
Ottawa, ON Canada

(bernard | afelty)@eecs.uottawa.ca

Stan Matwin
Dalhousie University, Faculty of Computer Science

Canada Institute for Computer Science,
Polish Academy of Sciences

Halifax, NS Canada
stan@cs.dal.ca

Abstract— XACML is a powerful and flexible access control (AC)
policy language. It is an OASIS standard that is now widely used
in a variety of applications, particularly those that require inter-
operability between AC systems. The language definition includes
a precise grammar, syntax, and semantics, and it is both
expressive and verbose. This combination of expressive power
and verbosity can lead to difficulty in understanding the
language’s syntax and semantics for both technical and non-
technical users alike. As a result, reducing the difficulty of
editing XACML policies has become an intense area of research.
In our own work in this area, we previously showed how to
render complex XACML conditions using a non-technical display
notation and showed that it is easy to use this notation with
interactive plain text editors that do not require any technical
coding. Although XACML conditions are expressive and flexible,
XACML targets are actually the most commonly used XACML
language construct. They have an additional level of complexity,
especially in version 3.0, due to the fact that the form and kinds
of XACML constructs allowed in targets is much more limited.
This paper extends our previous work, showing how the same
powerful and flexible interactive editing principles can be applied
to targets in order to allow users to use natural logic rather than
implementation logic. We extend these principles and fully
integrate them into our editing tool, easyXACML. This tool is
usable by users with no technical knowledge of XACML, thus
making XACML totally transparent to the user, while still
retaining all of its functionalities and semantics. Our tool thus
allows users to focus on policy logic rather than on details of
syntax. As a result, the risk of errors in policies is greatly
reduced.

Keywords-component; Access control, XACML, policy
administration point, ABAC, RBAC.

I. MOTIVATION

The XACML language [1][2] is based on XML and has a
rich typing system and set of access control (AC) logic
specification constructs. These features make it very efficient
for specifying the most recent AC models, especially those
that are particularly efficient for expressing fine grained AC,
such as the ABAC [3] and RBAC [4][5] models, as well as
many other derived models. XACML has one major advantage
over text based specification languages in that it eliminates the
cost of developing dedicated compilers. It does so by making
use of a large body of open source generic XML tools in

combination with the XACML schema. It is widely used
mostly because as a standard, it fulfills the needs for inter-
operability capabilities [6], which is a basic requirement for
federated systems.

However, XACML is a complex language with lots of

constructs and despite XML’s self-describing markup
approach, many factors make it difficult to use off-the-shelf
generic XML tools for implementing a policy administration
point (PAP) efficiently. Such factors include the length of
these self-describing XML tags, long domain names, a vast
collection of operators, including user defined operators, and
structural components. One outcome is that users often avoid
XACML altogether and instead use more traditional
approaches, such as relational databases using SQL as in the
medical application discussed in [7]. As a result, there have
been many attempts to alleviate this problem and they can be
classified into two broad categories:

• PAPs for technical programmers
• PAPs for non-technical users

In a fully working implementation in previous work [8],

our contribution was to provide a solution for non-technical
users for XACML rule conditions, which consist of plain
Boolean expressions. Also, in previous work [9], we have
shown how to represent XACML targets using the same
notation as for XACML rule conditions. The editing
capabilities provided by easyXACML are particularly useful
in domains where dynamic access control is important. For
example, medical applications, military applications, and
emergency response team applications are domains where
rules change often. It is particularly important that changes
can be made quickly by medical, military, or emergency
personnel, who are unlikely to be XACML experts. However,
while this approach was developed primarily for non-technical
users, it turned out that technical AC administrators equally
benefit, mostly because they can focus on AC logic rather than
on syntax.

Finally, another major advantage of the non-technical

approach is that it allows a completely different style of
composing policies. The prevailing style is to specify simple

978-1-4799-5158-1/14/$31.00 ©2014 IEEE 150

AC logic involving only conjunctions of single instances of
logic criteria for a given attribute and to rely on the natural
hierarchical nature of the XACML language to structure
policy sets into policies and rules. The two main language
constructs for specifying AC logic in XACML are the multi-
level (policy set, policy, and rule) target and the rule-specific
condition. The main programming style currently used by the
vast majority of XACML users consists of locating the
essential part of AC logic in targets, and using rule conditions
only for minor refinements.

 In XACML 2.0, another restrictive practice was to
confine AC logic to single combinations of subjects, actions,
resources and environment attributes. Early attempts to use the
full flexibility of rule conditions encountered limited
enthusiasm. Also, the XACML target has the advantage that it
orders policy logic into predictable categories, thus making it
efficient to evaluate by policy decision points (PDP).
However, this advantage is somewhat lost by duplication of
information that results from using targets. In previous work,
we have shown the structural advantages of using the
expressive power of conditions to represent logic because they
are closer to the Boolean expression representation, and while
there is no trace of other publications on this matter, we have
found at least a patent for an algorithm to transform XACML
targets into rule conditions [10], which seems to indicate that
the problem is well known. The main reason invoked for the
lack of success of the rule condition approach was the
difficulty of representing complex logic in databases. While
rule conditions allow very complex expressions, the targets
actually do also allow complex expressions in a limited way.
This is due to the fact that targets can be used to specify
alternate and supplementary matches. This has led to solutions
that transform complex XACML targets into access control
lists (ACL) as in [11]. On the other hand, others try to do
exactly the opposite [12], transforming ACL to XACML.
However the latest version of the standard, XACML 3.0,
represents a breakthrough because it provides the capability
for more complex logic in XACML targets by allowing the
mixing of subject, action, and resource matches. This
capability also enables the policy writer to reduce the number
of individual policies and rules required for a given AC
application. However, the only drawback of this approach is
that the depth of the logic trees for a given target is limited to
three. Deeper logical expressions can be implemented by
distributing logic among the XACML hierarchical structural
elements (policy set, policy and rule targets) but always in a
somewhat restricted manner due to the implicit conjunction
between policy structural elements in the hierarchy.

XACML conditions use straightforward logic structured
naturally using explicit conjunction and disjunction operators,
which can be mapped on a one-to-one basis to non-technical
terminology. XACML targets, on the other hand, use implicit
conjunctions and disjunctions, either totally or partially
depending on the XACML version but also are based on
shallow depth logic expressions. This is a significant

restriction. These restrictions force the users to use relatively
inefficient programming styles, one of which is code
duplication. While XACML 3.0 supersedes the 2.0 version,
there is still a wide community of users that use version 2.0
and, more importantly, is reluctant to migrate, mostly because
they find version 3.0 too complex. Also, XACML target
expressions require some duplication in definitions that is
unnecessary in a non-technical representation. Thus, our
contribution here is to show how complex duplicate XACML
definitions can be made transparent to the user when editing a
XACML target. This extends previous work that addressed the
complexity of Boolean expressions represented by XACML
rule conditions [8]. All other aspects of XACML policies and
policy sets are covered in previous work and not shown here.

II. XACML TARGET CHALLENGES

The main difference between XACML targets and XACML
rule conditions is that targets have the following limitations
depending on the XACML version:

• In XACML 2.0, subjects, resources and actions
(categories) cannot be mixed in matches. They are
described in separate sections for each category and
these sections are related only via implicit
conjunctions.

• In XACML 3.0, subjects, resources and actions can
be mixed in matches.

• In both XACML versions, each category can be
described in terms of alternate groups of matches.

• In both XACML versions, each alternative group can
contain only a conjunction of matches.

Thus, while the depth of rule conditions is unlimited, the
depth of target expressions is limited to 3 and with a very
specific hierarchical structure in terms of conjunction and
disjunction operations allowed at each level as shown in
Figure 1.

Figure 1: XACML target restrictions

Thus, the challenge consists of introducing these

restrictions in the tool but also by hiding them from the non-
technical user. This can be easily achieved by using context
driven principles that allow presenting only what is allowed at

151

a given step of a target construction task. Aside from the
capability of mixing categories in XACML 3.0 targets, the
difference between the two versions is only syntactical and is
thus irrelevant in the non-technical representation editing
phase. Also, from a syntax point of view, while in version 2.0
all of the logical operators shown in Figure 1 are implicit, in
version 3.0 only levels 2 and 3 are explicitly implemented
using AnyOf and AllOf tags, level 1 remaining implicit. For
example, a policy that specifies that physicians can read
diagnosis or surgery reports without restrictions while nurses
can do so only while in an emergency or operating room
would be specified as a policy target in XACML 3.0 as
follows:

01 <Target>
02 <AnyOf>
03 <AllOf>
04 <Match MatchId= "string-equal">
05 <AttributeDesignator
06 Category="subject-category"
07 AttributeId="subject-id"
08 DataType="string"/>
09 <AttributeValue DataType="string"
10 >physician</AttributeValue>
11 </Match>
12 </AllOf>
13 <AllOf>
14 <Match MatchId= "string-equal">
15 <AttributeDesignator
16 Category="subject-category"
17 AttributeId="subject-id"
18 DataType="string"/>
19 <AttributeValue DataType="string"
20 >nurse</AttributeValue>
21 </Match>
22 <Match MatchId= "string-equal">
23 <AttributeDesignator
24 Category="subject-category"
25 AttributeId="Location"
26 DataType="string"/>
27 <AttributeValue DataType="string"
28 >emergency room</AttributeValue>
29 </Match>
30 </AllOf>
31 <AllOf>
32 <Match MatchId= "string-equal">
33 <AttributeDesignator
34 Category="subject-category"
35 AttributeId="subject-id"
36 DataType="string"/>
37 <AttributeValue DataType="string"
38 >nurse</AttributeValue>
39 </Match>
40 <Match MatchId= "string-equal">
41 <AttributeDesignator
42 Category="subject-category"
43 AttributeId="Location"
44 DataType="string"/>
45 <AttributeValue DataType="string"
46 >operating room</AttributeValue>
47 </Match>
48 </AllOf>
49 </AnyOf>
50 <AnyOf>
51 <AllOf>
52 <Match MatchId= "string-equal">
53 <AttributeDesignator
54 Category="resource-category"
55 AttributeId="resource:resource-id"

56 DataType="string"/>
57 <AttributeValue DataType="string"
58 >surgeries report</AttributeValue>
59 </Match>
60 </AllOf>
61 <AllOf>
62 <Match MatchId= "string-equal">
63 <AttributeDesignator
64 Category="resource-category"
65 AttributeId="resource:resource-id"
66 DataType="string"/>
67 <AttributeValue DataType="string"
68 >diagnosis</AttributeValue>
69 </Match>
70 </AllOf>
71 </AnyOf>
72 <AnyOf>
73 <AllOf>
74 <Match MatchId= "string-equal">
75 <AttributeDesignator
76 Category="action-category"
77 AttributeId="action:action-id"
78 DataType="string"/>
79 <AttributeValue DataType="string"
80 >read</AttributeValue>
81 </Match>
82 </AllOf>
83 </AnyOf>

 84 </target>
Listing 1: XACML 3.0 target example

For both versions of XACML, the AC logic described in
listing 1 is represented exactly the same way in our non-
technical notation as shown in Figure 2.

Figure 2: Non-technical notation rendering

III. CURRENT APPROACHES TO XACML POLICY

ADMINISTRATION

A steady evolution of approaches for editing XACML
policies has taken place, starting with the most immediately
obvious solution of using off-the shelf XML editors. However,
the difficulty of the language associated with XML editors has
led to three different categories of approaches:

• Use of dedicated XACML user interfaces

152

• Use of AC application custom made user interfaces

• Generic non-technical plain text XML-less editors

These three different approaches address two basic
concerns:

• Reducing the learning curve of XACML through the
use of pull down menus showing all XACML
grammatical elements to choose from

• Making XACML totally transparent to the user

The most immediate solution for editing XACML policies
is to use a generic XML editor with the XACML schema such
as for example as the open source XmlPad [13]. In a case of a
complex grammar like for XACML, the user loses the
overview of what is required to be filled in, and more
importantly, the overview of the logic expression he/she is
attempting to assemble. XACML dedicated editors such as the
University of Murcia open source UMU XACML editor [14]
are essentially hard-coded XML graphical user interfaces.

We have also found that a significant number of industrial
applications try to find a solution to the natural complexity of
XACML by restricting the use of the rich capabilities of
XACML. They do so by providing only a subset of XACML
capabilities using simple logic structural concepts that satisfy
the immediate needs of their users for specific AC
applications. However, this approach will naturally result in
non-re-usable applications because such GUIs need to be
developed separately for each application. This also means
that each of these separate applications needs to be maintained
separately with the potential for duplication of human
resources. Also, modifications to allow new AC needs will
require long and costly design processes, thus limiting the
possibility to adapt to new situations—particularly emergency
situations—rapidly.

Another approach to avoiding working with XML is to

use plain text languages. In [15], the authors propose an
alternate syntax for the XACML language with the
corresponding translators to pure XACML. A Technica project
called noXACML [16] proposes a Java-like language where
policies are described using plain if statements. Finally, other
tools make use of the advantages of the Integrated
Development Environment of Eclipse [17].

All of the above solutions have one thing in common.
They require technical knowledge:

• Programming skills in general

• Technical knowledge of XACML structural elements

Thus, none of these solutions are usable for non-technical
users.

IV. NON-TECHNICAL XML-LESS SOLUTIONS

By non-technical users, we mean those that understand only
natural languages and have no experience with technical

languages such as policy specification languages. Most access
control policies are composed by such non-technical users,
mostly at the managerial level and usually using natural
languages. They are passed on to technical personnel that
implement the policies in XACML. However, this process is
often a source of errors due to potential misinterpretations. It
also creates a technological barrier between the owner of a
policy and the implementer, preventing the owner from
verifying the correctness of the implemented policy. The need
for non-technical approaches to policy making has been the
subject of a survey in [18]. Although there have been
experiments with translating policies written in natural
language into formal languages [19], the natural ambiguity of
natural languages reduces the effective usability of such an
approach. New applications in the medical, military and
emergency services domains require the capability to create
new policies literally on the fly. Including technical people in
this process is impossible because it causes too much delay in
both the creation of policies and their verification. Instead, our
approach consists of displaying AC logic in what appears to be
natural language but in fact is very formal in the background
and is constrained exclusively to the structural elements of
XACML. This is easily achieved by coupling plain text with
an object oriented (OO) representation of XACML policy
elements using the XACML policy model provided by the
standard, which is shown in Figure 3. Thus, in this XML-less
plain text representation, there is a one-to-one mapping with
XACML elements at all times. More important is the fact that
the policy logic can only be displayed in plain text by deriving
it from the background object oriented representation, and can
actually never be written directly with a plain text editor. If
the latter were allowed, this would mean that we were defining
a new language and requiring the user to obtain the technical
knowledge necessary to use it. This is exactly what we are
trying to avoid. The internal object oriented representation is
used to generate actual XACML code that is stored in a plain
text file or a database. We note that this is the opposite of an
approach presented in [20] where the natural language is
transformed into a parse tree that is then manipulated to obtain
a formal XQuery to an XML database.

Figure 3: The XACML 3.0 policy model

153

A. Principles of Interactive Plain Text

The AC logic is rendered from an underlying object
oriented representation. In order to be able to modify policy
logic from that plain text representation, there needs to be a
way to link it to the OO representation. This is easily achieved
by recording the position of a plain text word in the text of the
policy logic and linking it to its corresponding object instance.
For example a rule target that states that a nurse can read a
diagnosis report is rendered in our non-technical notation as
follows:

 subject-id matches nurse
and
 resource-id matches diagnosis
and
 action matches read

It corresponds to an internal representation of a XACML 2.0
target as a hierarchy of object instances as shown in Figure 4.

Figure 4: internal XACML object representation

In our AC logic rendering, scoping of operators is
achieved via indentation. This is a natural way of scoping,
commonly used currently by non-technical users when writing
plain text legal documents. In such documents a sub-clause is
written using indented paragraphs usually preceded by clause
numbers. Moreover, when constructing AC logic using our
editor, non-technical users indicate scope by merely selecting
an attribute value, and the placement of this value defines the
context. For example, specifying that physicians or nurses can
read surgery reports is rendered as follows:

 Subject matches physician
 or
 Subject matches nurse
and
 Resource matches surgery report
and
 Action matches read

In the above rendering, the conjunction operators are the
top-level of the target expression while the disjunctions about
the subjects represent the AnyOf target construct at the second
level. Matches are specified as a simple sentence (not parse-
tree like) because the scope of the match operator is clear
enough in natural language.

B. Principles of Data Models

Hiding the complexity of XACML requires eliminating not
only long XML tags but also long domain definitions for
attribute values and even data values. This is easily achieved
using data models as shown in Figure 5, which for each AC
application attribute, describe the mapping between the
displayed information and the XACML equivalent. Data
models are widely used by all kinds of editors though usually
only for determining the XML content of pull-down menus
from which the user can select, such as an appropriate operator
for a given type. Our data model contains additional
information for the translation back and forth between the
non-technical notation and real XACML. It also provides the
capability for users to define their own operators and to
redefine the external non-technical textual representation of
any existing operator to their liking.

Figure 5: XACML attribute data model

C. Low Maintenance Cost

One of the advantages of a generic XACML editor whether
technical or non-technical that is not tied to a specific AC
application is that it can be re-used for a wide number of
applications across multiple companies without re-
development. This provides the benefit of economies of scale
both at the development and maintenance level. The only
modification required is to the AC application’s attribute data
model. Modifying the data model is precisely the role of a
technical person; in other words, a technical person must
configure our editor so that it can be used by non-technical
personnel. This principle applies both for technical and non-
technical solutions.

V. NON-TECHNICAL TARGET EDITING

As discussed earlier, XACML targets require some
duplication. In this section, we illustrate how we avoid such
duplication when policies are presented to the user using our
notation. In addition, as a user edits a policy, the need for
duplication in the underlying XACML may come and go, but
all such duplication, as it is added and removed, remains
transparent to the user.

A. Definition of Context

Since each word in the non-technical expression rendering
is linked to an OO representation, context can easily be
derived by the underlying software. In our implementation,

154

context is defined by selecting the value of a match
expression. Internally, the software will walk the object
hierarchy and determine that this value is involved for
example in a resource match. Once the context is determined,
the software will offer the appropriate operation that can be
performed at this point. For both XACML versions of targets,
this consists of two possibilities:

• Adding an alternate group of matches (AnyOf)

• Refine an existing match with additional matches
(AllOf)

For version 2.0, context also means determining the exact
nature of the category of the attribute, i.e. subject, resource or
action. Thus, in order to determine context, the user must first
select a value and upon a right mouse click be presented with a
menu of possible operations as shown in Figure 6. For
example the fact that the value nurse was selected gives only
the choice to add additional AnyOf constructs (add an
alternate constraint menu item) or refine a category by adding
additional AllOf constructs (refine a category menu item) but
not add a new constraint in the highest level of the target parse
tree.

Figure 6: Determining context

Finally, when the user has selected a task that leads to the
creation of a new expression, the context also determines the
list of attributes and their related operators and potentially pre-
defined values to construct a given match using the constraint
editor as shown in Figure 7.

B. Specifying a Match

Matches are specified using the constraint editor interface
that proposes a list of attribute names to choose from. This list
is derived from the attribute data model specified by the policy
administrator as shown in Figure 5. It is composed of three
columns. The first column contains the list of attributes
available from the attribute data model. Initially, the two
remaining columns remain empty until the user selects one of
the attributes. Once the user has selected an attribute to build
her expression, a list of operators corresponding to the data
type of the selected attribute will appear in column 2 and a list

of predefined values that were defined in the data model will
appear in column 3. This is an alternative approach to entering
values directly. The concept of predefined values was
introduced in order to further prevent errors due to spelling
mistakes or domain violations. For example, in Figure 7, a
user has chosen attribute resource-id that was defined in the
data model as having the data type string, which then
determines the list of available operators for that data type
along with available predefined values.

Figure 7: Non-technical constraint editor

Selecting attribute resource-id, defined as type string
in the data model, and then selecting the corresponding match
operator rendered with the word matches, and then the value
surgery report, which we have pre-defined in the data model,
will produce the corresponding objects in the internal
representation and be rendered as follows:

resource-id matches surgery report

An action or subject can be selected using exactly the same
procedure.

C. Adding an Alternate Group of Matches

Alternative groups of matches are represented in lists of
categories (subject, resource or action) in version 2.0 and
similar lists wrapped inside an AnyOf tag in version 3.0. In
Figure 8, in order to add an alternate subject for physicians,
the user first selects the current value nurse for attribute
subject-id and upon a right mouse click, obtains the constraint
editor where she is presented with the list of possible
operations. To add an alternate constraint for physicians, the
add an alternate constraint menu item would be selected to
enter a new match for physicians. Once this operation
completed, this will result in generating a new object instance
in the underlying AnyOf construct as shown in listing 1
between lines 02 and 21. Both the nurse and the physician are
wrapped around their own AllOf tags.

155

Figure 8: XACML 3.0, Adding alternate constraints

D. Refining a Match

Refining a match consists of adding additional matches
such as for example stating that a nurse can read a diagnosis
report only if he/she is located in an operating room. In
version 2.0, this results in adding additional matches (subject,
resource or actions) while in version 3.0 it consists of adding
more matches inside an AllOf tag. The non-technical user does
not need to be aware of these technical details and after
selecting the value nurse and doing a right mouse click,
merely selects the refine a subject menu item as shown in
Figure 9. He/she will then be directed to the constraint editor
to specify a match by selecting an attribute name, an operation
and a value, for example the Location attribute and value
operating room.

Figure 9: Refining a constraint

E. Hiding Implementation Details for Complex Expressions

The XACML target restrictions shown in Figure 1 force
the user to use duplicate definitions when trying to construct
more complex logic. For example, in listing 1, the logic that
says that nurses can read diagnosis reports only while in an
emergency room or operating room cannot be implemented as
a disjunction at the lowest level of a target definition. This is
because the disjunction provided by the XACML AnyOf
language construct is already used up to distinguish the cases

where the subject-id is either a physician or a nurse as shown
at lines 20 and 38. The level below can contain only
conjunctions as shown in Figure 1. Thus, in a XACML target,
the work around this restriction can only be expressed by
entering the nurse value for subject-id twice as two different
alternatives and then using an additional subject match to
distinguish the emergency room and operating room cases, as
shown in Listing 1. The first conjunction between subject
matches is found between lines 13 and 30 for the emergency
room case and the second between lines 31 and 48 for the
operating room case. The duplication of the subject-id nurse
occurs at lines 20 and 38. We have determined that this
restriction can be hidden to the non-technical user by factoring
out the nurse subject-id value and creating a rendered
disjunction at the lower level as shown in Figure 2. The
generated XACML code is of course different than the
rendering in this case but fully behaviorally equivalent. From a
graphical interface point of view this is achieved with a special
menu item called alternate refine a category as shown in
Figure 10. When choosing this item, the software
automatically inserts the duplicate intermediary level match
(nurse in this example) but hides it in the rendered version as
shown in Figure 2.

Figure 10: XACML 2.0, Entering an alternate refinement

Note that in this example, we have chosen a
specification style where the logic is contained within a single
policy. The most frequent style consists of specifying the two
cases (physician and nurse) in two separate policies. This
second approach actually does not avoid the duplication of the
subject-id nurse either. The advantage of our first approach is
that the entire logic is displayed at once in a single window
and thus provides an overview of the logic.

A similar problem arises when deleting a match that

is a refinement. When there are several matches in a subject,
resource or action, there is no problem. We merely delete the
selected match only. However, when there is only one
additional match left, as for example to express that a nurse
can read a surgery report in the case of an emergency, there
are two different contexts to consider. The first one is the case
where there is no alternative match starting with a duplication.
This case can again be resolved by merely deleting the
refinement. However, when there is a duplication of the first
match among subjects, then deleting one of the refinement

156

matches would create a logical error because the second
alternate match with the duplicate subject would make the first
refined subject (the one containing more than one match)
useless. For example, if we delete the operating room match in
line 46 of Listing 1, the subject match nurse at line 38 would
always pre-empt the first subject match at line 20 despite the
subject match refinement emergency room at line 28 when
evaluated by a PDP. Thus, in order to avoid such errors, and
also to avoid the user having to remove both subject matches
of the second subject in two steps, the editor merely removes
the entire subject specification at once. Here again, we made a
XACML technical detail completely transparent to the user in
order to avoid errors.

The internal object oriented representation of this target is

volatile. It exists only while the policy is loaded and displayed.
Eventually it will be transformed from the internal object
instance into XACML format upon saving.

VI. CONCLUSION

We have shown that it is easy to represent XACML targets
using a non-technical notation and thus make the grammatical
elements of XACML targets completely transparent to the
non-technical user while editing a XACML policy. But we
have also shown that implementation details to represent
specific user requirements can also be made transparent to the
user. While our new PAP implementation contributes to make
XACML more usable in general, it also makes the migration
from version 2.0 to the more powerful version 3.0
considerably easier. As stated, the new version is considered
by many users as too complex, and thus our approach can
eliminate the traditional fears that surround complexity.
However, our non-technical approach to XACML policy
editing still retains a technical element: the concept of policy
set, policy, rule, targets, and conditions. So far we consider
that these structural elements are easy to learn by a non-
technical user, because they correspond to a very common and
well understood structuring mechanism. However, the next
step in this non-technical approach would be to make the
above structural concepts transparent to the user as well.

ACKNOWLEDGMENT

Our thanks to numerous industrial partners that we cannot
name due to non-disclosure agreements.

REFERENCES

[1] XACML 2.0 OASIS standard DOI= http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

[2] XACML 3.0 OASIS standard DOI= http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

[3] V.C. Hu, D. Ferraiolo, R. Kuhn, n, A. Schnitzer, K. Sandlin, R. Miller,
R. Miller, K. Scarfone, Guide to Attribute Based Access Control
(ABAC) Definition and Considerations, in NIST Special Publication
800-162

[4] S. Verma, M. Singh, S. Kumar, Comparative analusis of Role Base and
Attribute Base Access Control Model in Semantic Web, in International
Journal of Computer Applications, vol. 46, No. 18, May 2012.

[5] D. F. Ferraiolo, D. R. Kuhn, Role-based access control, in Proc. of the
15th National Computer Security Conference, pages 554-563,1992.

[6] G.Leighton, D. Barbosa, Access Control Policy Translation and
Verification within Heterogeneous Data Federations, in Proceedings of
the 15th ACM symposium on Access control models and technologies,
pages 173-182.

[7] W.V. Sujansky, S. A. Faus, E. Stone, P. Flatley Brennan, A method to
implement fine-grained access control for personal health records
through standard database queries in Journal of Biomedical Informatics,
pages S46-S50.

[8] B.Stepien, A.Felty, and S.Matwin, “A non-technical user-oriented
display notation for XACML conditions,” E-Technologies: Innovation in
an Open World, Proc. of the 4th International MCeTech Conference,
Springer, 2009.

[9] B. Stepien, A. Felty, S. Matwin, Advantages of a Non-Technical
XACML Notation in Role-Based Models, in PST 2011 proceedings

[10] A. Anderson, S. Proctor, Method for analysing an XACML policy, U.S.
patent 20100042973.

[11] S. Jahid, C.A. Gunter, I. Hoque, H. Okhravi, MyABDAC: Compiling
XACML Policies for Attribute-Based Database Access Control in
CODASPY’11 proceedings, pages 97-108.

[12] G. Karjoth, A. Schade, Implementing ACL-Based Policies in XACML,
in ACSAC’08 proceedings, pages 183-192.

[13] XmlPad, http://xml-pad.sourceforge.com

[14] UMU editor, http://sourceforge/net/projects/umu-xacmleditor

[15] M. Masi, R.Pugliese, F. Tiezzi, Formalisation and Implementation of the
XACML Access Control Mechanism, in proccedings of ESSoS’12 of the
4th international conference on Engineering Secure Software and
Systems, pages 60-74.

[16] Technica, NOXACML project, http://bradjcox.blogspot.ca/2012/06/i-
just-got-ok-to-start-open-source.html

[17] Axiomatics, Axiomatics Language for Authorization, DOI:
http://www.axiomatics.com/axiomatics-alfa-plugin-for-eclipse.html

[18] L. Bauer, L. Faith Cranor, R.W. Reeder, M. K. Reiter, and K. Vanica,
“Real life challenges in access-control management,” 27th CHI
Conference, 2009.

[19] C.A. Brodie, C.-M. Karat and J. Karat, “An empirical study of natural
language parsing of privacy policy rules using the Sparcle policy
workbench,” Proc. of the 2nd Symposium on Usable Privacy and
Security, 2006.

[20] Y. Li, H. Yang, H. Jagadish, Constructing a generic natural language
interface for an XML database, in International Conference on
Extending Database Technology proceedings.

157

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.04 points
 Normalise (advanced option): 'original'

 32

 D:20130103075430
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 Fixed
 Up
 14.0400
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

